Neurofeedback Treatment for ADHD

In the article, “Can Neurofeedback Effectively Treat ADHD?” author David Rabiner discusses why one should consider neurofeedback, what it is, and how it helps ADHD symptoms. 

iStock-1163738449.jpg

Neurofeedback is a source of therapy that trains the brain using EEG data to help patients improve their focus, impulse control, and executive function. This training involves providing feedback to the brain based on the brain waves and encouraging the brain to correct specific areas such as attention and self-control. Individuals with ADHD may pursue neurofeedback as their brains start off with low-frequency delta or theta brain waves. According to Rabiner, twenty to forty 30-minute training sessions are required to see a notable difference in one’s ADHD symptoms.

During neurofeedback sessions, practitioners use scalp sensors to read a patient’s brain activity by observing how and when a patient’s brain waves hit an optimal level (Rabiner). After an initial assessment , a treatment plan is set to provide specific feedback and encourage their brain to function in its optimal zone. Adjustments can always be made to the treatment plan as improvements occur.

Rabiner provided examples of individuals receiving neurofeedback and the results: 

  • Monastra, et al. (2002): 50 six to nineteen-year-olds with ADHD included neurofeedback in their treatment plan. They found that the youngest individuals had the most notable difference in their brain wave patterns, their brain waves had normalized. This pattern was found to be consistent after individuals discontinued their medication and only used neurofeedback. 

  • Levesque, et al. (2006): Rabiner stated that “20 eight to twelve-year-old children with ADHD were randomly assigned to receive 40 weekly neurofeedback treatment sessions, or to a waitlist control condition with no treatment.” fMRI scans showed that those who received neurofeedback experienced a significant change in their brainwave patterns versus no change for the children in the control group.

  • Gevensleben, et al. (2009): Rabiner explained that 102 eight to twelve-year-olds with ADHD were randomly chosen to receive 36 neurofeedback or computerized attention training sessions over a span of 18 weeks to help with homework difficulties. They found that the children in the neurofeedback group showed 60% greater reductions of their ADHD symptoms compared to the computer attention training group and consistently maintained those levels six months later (Rabiner). 

  • Meisel et al. (2013): Similar to the study above, “23 seven to fourteen-year-olds were randomly assigned treatment with methylphenidate or 40 neurofeedback sessions” (Rabiner). Both groups saw a significant reduction in parent and teacher ratings of their ADHD symptoms immediately after and 6 months later training ended (Rabiner). Rabiner reported that teachers saw “significant academic improvements in reading and writing skills for only the neurofeedback group…”

Even though most of the studies were not fully blind, the research conducted still suggests that neurofeedback is a promising therapy for ADHD. Biofeedback is also rated as a Level 1 - Best Support intervention by the American Academy of Pediatrics (AAP) for ADHD symptoms. Neurofeedback is not magic or the saving grace to difficulties with attention, hyperactivity or executive functioning, but it can help. 

For more information on how neurofeedback may help and lead to behavior improvements and overall reduction in ADHD symptoms, please visit San Diego Center for Neurofeedback, APPC or Contact us to schedule an appointment to start treatment right away.

~Written by Lily Schmitt and Tanya L. Hilber, PsyD.

Reference

Rabiner, David. “Can Neurofeedback Effectively Treat ADHD?” ADDitude. 3 Sep. 2020. https://www.additudemag.com/neurofeedback-therapy-treat-adhd/.

Evidenced-Based Child and Adolescent Psychosocial Interventions. (2011) Addressing Mental Health Concerns in Primary Care: A Clinician’s Toolkit. American Academy of Pediatrics.

COVID-19 Nightmare – the Chronic Stress is real

COVID-19 has affected everyone. The world is not the same. The vast majority of us have been plunged into this pandemic unprepared for what awaited us.

Who was prepared to be locked up, have everything shut down, and society as we knew it – cancelled? It is no surprise that many of us are like shaken bottles of champagne ready to go off and explode at the slightest disturbance. And indeed, we see daily that folks who are stressed.

iStock-1198401624.jpg

Moms and Dads now working at home, living 24/7 with their children, expected to now school their children at home while keeping their jobs, and with nowhere to go to unwind from it all. What started out as two months, became six months, and now the end does not appear in sight. If that is not bad enough, then came civil unrest, and now natural disasters. Nightmare is an appropriate term for our unreal-reality show.

So, if you are reading this and struggling during this nightmare, this COVID-19 chronic stress  – Please come try neurofeedback at San Diego Center for Neurofeedback, APPC. Neurofeedback helps with symptoms created by this nightmare: stress, anxiety, focus, sleep, learning issues, trauma, self-regulation, headaches, depression, etc. The brain in the Covid-19 stress does not cope well with chronic levels of stress. Neurofeedback can provide the extra assistance to help with this stress we experience daily. 

iStock-1266722779.jpg

Simply put, the goal of Neurofeedback is the reduction of the symptoms that you would rather not live with. Neurofeedback is all about symptom reduction. Neurofeedback is all about training the brain to work better with the challenges it is facing. Neurofeedback does not address what is causing the symptoms, Neurofeedback addresses how the brain is coping with them. In most cases, but not all, Neurofeedback lessens symptoms and sometimes eliminates them. For folks on medications, it may even assist in reducing them. 

Neurofeedback in a word helps the brain to become – Calmer. In our experience, it works for most people. In a 2020 study co-authored by Bessel Van der Kolk it even helped those with severe childhood trauma or neglect. 

It is our opinion that San Diego Center for Neurofeedback, APPC is San Diego’s best Neurofeedback treatment center. Our team has been together for years and does weekly case review of each client. We bring a lot of brainpower together to give each client the benefit of our knowledge and experience.

Neurofeedback can’t fix the Covid-19 nightmare or its resulting chronic stress. But Neurofeedback for most does remarkable work at reducing the symptoms plaguing us all during this pandemic. Please give us a call to discuss. Thank you, and may you and your loved ones be safe during these challenging times.

Written by Jacob Murdock, M.A. and Tanya Hilber, PsyD

Reference:

Rogel, A., Loomis, A. M., Hamlin, E., Hodgdon, H., Spinazzola, J., & Kolk, B. V. (2020). The impact of neurofeedback training on children with developmental trauma: A randomized controlled study. Psychological Trauma: Theory, Research, Practice, and Policy. doi:10.1037/tra0000648

https://www.besselvanderkolk.com/uploads/docs/Child-Neurofeedback-paper-6_12_2020-FF.pdf

The Beauty of the Brain, Part 2

Part 2: Brain Research from Memory to Meditation

In the National Geographic article, “Beyond the Brain,” James Shreeve describes scientific research on amazing brain functions conducted by well-known scientists. If you missed it, peruse Part 1: Cognitive Functions and Corina’s Language Abilities.

Memory Training

28-year-old Glen McNeil wants to earn his green badge and become a licensed taxi driver in London. In order to do this, he has to pass three sets of examinations that will test his knowledge of London streets and surrounding towns. Meanwhile, McNeilI’s hippocampus has to do extra work. The hippocampus is a critical part of the brain that supports the functions of memory and learning, along with the processing of spatial relationships in the environment.

An MRI study published in 2000 by scientists at University College of London, stated that in London taxi drivers the hippocampus was enlarged compared in the rear portion of the brain. This concludes that fact that the adult human brain cannot grow. While, on average, the front portion of the hippocampus is observed to be smaller in taxi drivers, suggesting that neighboring regions of the brain have to help build a very detailed map of where one needs to go.

On the contrary, in 1998 Fred H. Gage of the SaIk Institute in La JoIIa, California, presented that new cells can grow in the adult human hippocampus. Gage believes that stem cells exist everywhere in the brain as well. Stem cells are capable of developing into functioning new neurons that could provide hope for the treatment of Alzheimer's disease, Parkinson's disease, and a host of other degenerative brain disorders in future all due to nerve regeneration.

Universal Emotional Expressions

Forty years ago, psychologist Paul Ekman of the University of California, San Francisco, showed isolated Fore people in New Guinea photographs of Americans expressing various emotions. The Fore people recognized expressions of anger, happiness, sadness, disgust, fear, and surprise even though they had never been exposed to Western faces.

Ekman conducted the experiment again but in reverse. She showed Fore faces to Westerners this time. She observed that the emotions were again unmistakable. Ekman's study supported the notion that “the facial expressions of basic emotions are universal, an idea first put forth by Charles Darwin.” According to Ekman, by consciously being aware of the time spent on one emotion and what triggers it, we can manage our emotions better.

iStock-1023692050.jpg

Fear from Nature vs Nurture

It was seen in natural selection that those who retreated from threats survived, while individuals who questioned and were curious about the “threat” did not live as long to pass on their genes.

In the 1980s a series of studies at the University of Wisconsin-Madison tested whether or not fear is in our nature or a product of our nurture. In detail, they compared the reaction (fear level) of lab-raised monkeys with monkeys born in the wild to test if one was more afraid of a snake now that one watched the other be scared of it. As a result, lab-raised monkeys, with no previous fear of snakes, began to show fear after watching wild-born monkeys show fear. However the idea that one monkey will be scared of the same thing if they see the other monkey react, does not apply to every object or living organism. In detail, when lab-raised monkeys watched wild-born monkeys be afraid of flowers, lab-raised monkeys did not react the same.

In more recent research, scientists have found that the amygdala is where in the brain's emotional system fear is activated. Shreeve noted that “it seems likely that there is indeed, etched into the primate brain, a predisposition to dread natural phenomena that can hurt us, but no predisposition to learn to fear something that will not.” However, the predisposition requires a social experience, such as the two types of monkeys seeing one be scared of a snake, to be activated.

Neuroatypical

Fifteen-year-old Tito Mukhopadhyay has low-functioning autism where it is very difficult for him control his own behavior and difficulties with communication. However, despite the chaos and disconnect in controlling his body and mind, Mukhopadhyay wrote his own autobiography and demonstrated cognitive functioning and understanding. He described himself as two separate selves; one cognitive self, which he has control over to learn and grow, and the behavioral self that he has not been able to manage.

Michael Merzenich, a neuroscientist at the University of California, San Francisco noted that genes do play a role in such a diagnosis. Even one-year old infants who are eventually diagnosed with autism later tend to have an atypical brain growth spurt, which may be partially due to nerve impulse cells that overproduce in brain's white matter.” Other regions of the brain related to reading social cues and interacting with people tend to be less active. However, such a diagnosis is complicated and there is not just one identifiable cause.

Musicality

Those who have “absolute or perfect pitch,” “speaking words and repeating them days later at the same pitch,” can identify the sound of an E flat or G sharp as easy as anyone who can see that grass is green or the ocean is blue.

Investigators at the University of California, San Diego, suggests that the phenomenon may not be as unusual as one may think. Those who study music and those who speak tonal languages are more likely to have absolute pitch. A study found that only 7 percent of non-Asian freshmen at Eastman School of Music had perfect pitch, however more than half (63 percent) of Asian freshman at the Central Conservatory of Music had perfect pitch.

A genetic predisposition for “absolute pitch” is observed to be more common among cultures who have a tonal language, however this ability is also found to be more common in those cultures who value music and early musical training.

Object Permanence and Facial Recognition

At the Centre for Brain and Cognitive Development at Birkbeck, University of London, researcher Jordy Kaufman develops a “Babylab” that helps to understand what is going on in a baby's mind. Kaufman uses electrode caps on six-month-olds to view and record brain waves, or electrical activity in their brains. The infants then view a cartoon version of a train driving into a tunnel.

The goal is to test an infant’s sense of object permanence by observing the activity in a babies' right temporal lobes when an object in a video is suddenly hidden from view. Object permanence is the ability to understand that the object still exists even if it’s not physically seen. When the train disappears into the tunnel, a burst of activity in the babies' right temporal lobes is observed, demonstrating that the infants are actually trying to maintain the visual representation of the train even though it was shown to disappear into the tunnel.

Similarly, Babylab's Hanife Halit demonstrates that most infants have a predisposition to focus on and recognize faces in the first year of life. While neurotypical babies prefer faces, originally monkey and human faces, that are facing them, children with Autism may not have this genetic predisposition. Halit conjectures that without consistent interaction with people and their given emotions, a baby’s brain might fail to stay engaged with new social interactions.

iStock-896358708.jpg

Somatosensory Cortex vs Visual Cortex

In 1996 Pascual-Leone, a professor of neurology at Harvard University and Boston's Beth Israel hospital, and his colleagues at the National Institutes of Health performed a study that demonstrated that blind adults who were learning how to read Braille were using information gained from their fingers while reading Braille lights up the visual cortex of the brain as well as the somatosensory cortex. This means that not only are they feeling the raised Braille, but they are also visualizing what they’re reading as well.

Pascual-Leone’s research was to blindfold individuals and after a couple of days, the individual’s sense of touch and hearing were enhanced due bursts of activity in their visual cortex. Once the blindfold was off, activity returned to normal information gained from the eyes.  Although this time length was too short for new nerve connections, the research suggests that the true purpose of the visual cortex is to identify spatial relationships.

Creativity

On any given morning Alice Flaherty, a neurologist at Massachusetts General Hospital in Boston,” writes whenever she can, wherever she can.

Flaherty developed a case of hypergraphia, which is the compulsive and dire need to write. The need to write would come at any given moment, whether it be at 4 o’clock in the morning or at 6 o’clock at night, it was always there.

Flaherty ended up writing a book on her own condition because it interested her so much. She determined that her biggest flare-ups or episodes were those caused by large hormonal changes with childbirth, which is also a common trigger for depression, mania and other mood disorders. This condition is commonly associated with temporal lobe epilepsy, resulting in abnormal sensations and possible hallucinations.

Hypergraphia may offer important information to the idea of creativity in the brain. The frontal lobes provide judgment and flexibility of thought, however the temporal lobes and limbic system supply drive and motivation. This drive and motivation may provide more creativity than the frontal lobe as Flaherty suggests that the drive and motivation are more important than the critical thinking.

Meditation

Western neuroscientists have taken an interest in new evidence for the brain's plasticity, regarding Buddhist training and their techniques to steer their emotions into more compassionate and positive feelings rather than negative.

Richard Davidson and his colleagues at the University of Wisconsin-Madison have been studying brain activity in Tibetan monks, both in meditative and non-meditative states. He noticed that those who had negative emotions displayed activity in their right prefrontal cortex, while those who had more positive feelings had activity in the left prefrontal cortex.

Davidson tested this theory on volunteers from a high-tech company where one group of volunteers received eight weeks of training in meditation, while a control group did not. Both groups received a flu shot as part of the study.

At the conclusion of Davidson’s study, there was significant brain activity towards the left prefrontal cortex in those who were meditating, illustrating an increase in positive emotions. Regarding the flu shot, the group who was meditating also had a healthier immune response from the flu shot, demonstrating that the meditation not only created effects with their brain functioning and positive emotions, but also produced positive physiological effects.

For more information on brain development, emotion, and neurofeedback brain training, please contact us or visit our website.

-Written by Lily Schmitt and Tanya L. Hilber, PsyD

To review the first Beauty of the Brain blog post, read Part 1: Cognitive Functions and Corina’s Language Abilities.

References

Shreeve, James. “Beyond the Brain.” Science and Innovation. National Geographic Magazine. Web. https://www.nationalgeographic.com/science/health-and-human-body/human-body/mind-brain/